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We develop parametric models that incorporate misclassification error in an ordered response model and 

compare them with a semiparametric model that nests the parametric models. We apply these estimators 
to the analysis of English-speaking fluency of immigrants in the United Kingdom, focusing on Lazear's 

theory that due to learning or self-selection, there is a negative relation between speaking fluency and the 
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is substantial variation in the size of the marginal effects. 
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1. INTRODUCTION 

Many empirical studies in economics and other social sci- 
ences are concerned with the analysis of ordered categorical 
dependent variables, such as banded data on earnings, income, 
or hours worked. This data, often retrieved from surveys, have 
a true objective underlying scale but can be affected by mis- 
classification error. Another type of categorical data that has 
become increasingly popular in applied econometrics is based 
on subjective evaluations. Examples include data on job sat- 
isfaction (see, e.g., Clark and Oswald 1996), satisfaction with 
health (Kerkhofs and Lindeboom 1995), future expectations 
of household income (Das and van Soest 1997), or subjective 
evaluations of English-speaking fluency of immigrants in the 
United Kingdom (e.g., Chiswick 1991; Chiswick and Miller 
1995; Dustmann 1994), which we analyze in this article. Such 
data may suffer from the same misclassification problem. More- 
over, the bounds used to distinguish, for example, good from 
reasonable, reasonable from bad, and so on, may be specific 
to the person doing the evaluation (the respondent or the inter- 
viewer). 

In applied work, ordered categorical dependent variables are 

typically analyzed with ordered probit or ordered logit mod- 
els. In these nonlinear models, misclassification can lead to bi- 
ased estimates of the parameters of interest. To deal with this 

problem in the binary choice case, several parametric mod- 
els have been introduced that explicitly incorporate misclassi- 
fication probabilities as additional parameters. Lee and Porter 
(1984) estimated an exogenous switching regression model for 
market prices of grain, distinguishing regimes in which firms 
are cooperative and noncooperative. They observed an imper- 
fect indicator of the actual regime and extended the standard 

probit model with two misclassification probabilities for the 
events that regime A is observed given that regime B is ac- 
tive or vice versa. They estimated these probabilities jointly 
with the parameters of the price equations in both regimes. 
Hausman, Abrevaya, and Scott-Morton (1998) estimated binary 
choice models for job changes. Using parametric models, they 
found significant probabilities of misclassifying in both direc- 
tions. Using semiparametric models, they obtained estimates of 

the slope coefficients of interest that are similar to the estimates 
in the parametric model allowing for misclassification. 

In this article we follow Lee and Porter (1984) and Hausman 
et al. (1998) and incorporate misclassification errors in an or- 
dered response model. Standard tests cannot be used to test for 
the presence of misclassification errors, because the null hy- 
pothesis puts the parameters on the boundary of the parameter 
space. We apply a simulation-based testing procedure recently 
developed by Andrews (2001). We use the same type of test to 
test our model against a model that also allows for the possibil- 
ity that different evaluators use different thresholds, generaliz- 
ing the random thresholds model introduced by Das (1995). 

In addition, we consider a semiparametric model that nests 
all parametric models and avoids distributional assumptions on 
the error terms. Because this is a single-index model, the slope 
parameters of interest can be estimated using the semiparamet- 
ric least squares estimator of Ichimura (1993). 

The main issue in our application is the relationship between 
host country language proficiency of immigrant minorities and 
the regional concentration of the minority group. Understand- 
ing the assimilation and adaptation of minority and immigrant 
groups is an important and growing area of research in eco- 
nomics, which is becoming ever more relevant as societies are 

increasingly characterized by a mix of individuals with differ- 
ent cultural backgrounds. Speaking a common language is a 

key factor in this process. In an influential recent study, Lazear 
(1999) developed a model in which trade between different 

groups requires the ability to communicate with one another. 
To enhance trading possibilities, minority individuals may learn 
the language of the majority group. The incentive to learn the 

language is larger the smaller the relative size of the minority 
group. Moreover, minority individuals with low proficiency in 
the majority language may sort themselves into communities 
in which individuals speaking their own minority language are 
concentrated. As Lazear pointed out, the two processes both 
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lead to a negative association between minority concentration 
and fluency in the majority language. If the effect of minority 
concentration on language is created primarily through learn- 
ing, then the interaction between minority concentration and 
years of residence should contribute to explaining language 
proficiency. But if sorting is the only relevant mechanism, then 
this interaction should not be significant. Comparing data from 
the U.S. census for 1900 and 1990, Lazear concluded that only 
sorting mattered in 1990, whereas learning was important 
in 1900. 

We investigate the same issue for the United Kingdom, us- 
ing cross-sectional data on immigrants from ethnic minority 
communities drawn in 1994. Our parameters of interest are, as 
in Lazear's study, the effects of the regional minority concen- 
tration and its interaction with years of residence on English- 
language proficiency of immigrants. 

In survey data, language proficiency is typically evaluated by 
the respondent or the interviewer on a four- or five-point scale, 
ranging from bad or very bad to very good. It seems likely that 
evaluators differ in terms of the perceived difference between 
bad and reasonable, reasonable and good, and so on. In addi- 
tion, the reported variable may suffer from the same misclas- 
sification error as objective variables, such as the job change 
variable investigated by Hausman et al. (1998). Dustmann and 
van Soest (2002) focused on the latter type of error, comparing 
answers to identical survey questions on self-reported speaking 
fluency in the host country language by the same immigrants 
at different points in time. They found that, under the assump- 
tion that a decrease in language capacity is not possible, more 
than one-fourth of the total variance in the observed speaking 
fluency variable is due to random misclassification. 

Our main empirical question is whether generalizing the or- 
dered response model to allow for misclassification affects the 
answers to the economic questions concerning the relation be- 
tween language proficiency, minority concentration, and years 
of residence. The results of our empirical analysis show that 
allowing for classification errors is a clear improvement over 
the standard ordered probit model. In particular, the estimated 
probabilities of misclassification into the extreme categories are 
large. A formal test based on work of Andrews (2001) clearly 
rejects the null hypothesis that all misclassification probabilities 
are 0. Moreover, the model with misclassification errors can- 
not be rejected against a more general model that also allows 
for random threshold variation across evaluators. Allowing for 
misclassification also leads to substantially different estimates 
of some of the slope coefficients of the regressors compared 
with ordered probit. 

The qualitative conclusions on the effect of minority concen- 
tration on speaking fluency do not change if misclassification 
is allowed for. The effect is significantly negative. This is con- 
firmed by the semiparametric estimates. The estimates of the 
size of the marginal effects, however, are substantially biased 
if misclassification is ignored, particularly at low values of the 
concentration index. The interaction term between years of resi- 
dence and minority concentration is significant at the 10% level 
only in the parametric models and is insignificant in the semi- 
parametric model, suggesting that for our particular application, 
self-selection is a better explanation for the negative relation be- 
tween minority concentration and speaking fluency than learn- 
ing. 

The article is organized as follows. In Section 2 we present 
the models and their estimators. In Section 3 we briefly describe 
the data. We provide semiparametric and parametric estimates 
in Sections 4 and 5. In Section 6 we compare predictions of 
the two parametric models and the semiparametric model and 
test the parametric specifications. We provide some concluding 
remarks in Section 7. 

2. CATEGORICAL DATA AND MISCLASSIFICATION 

We assume that the dependent variable is observed on an or- 
dinal scale with three levels, coded 1, 2, and 3. In our appli- 
cation, these levels correspond to speaking English slightly or 
not at all, reasonably well, and very well. The models that we 
discuss extend straightforwardly to the case of more than three 
categories, but the parametric models will lead to more aux- 
iliary parameters and more intricate expressions for the likeli- 
hood function. The starting point is the ordered probit model, 
not allowing for classification errors. It relates observed cate- 
gorical information for respondent i to an underlying latent in- 
dex y* as follows: 

y7 = xi + ui; (1) 

Yi=j if mj-1 < y* < m, j 1,2, 3; (2) 

and 

uilxi " N(0, aO2). (3) 

Here xi is a vector of explanatory variables including a con- 
stant term, P is the vector of parameters of interest, and ui is the 
error term. We assume that mo = -o, mi = 0, and m3 = 00. 
The variance a 2 and the bound m2 can be seen as nuisance pa- 
rameters. We fix a2 to 100 to identify the scale. Throughout, 
we assume that the observations (yi, xi) are a random sample 
from the population of interest. 

2.1 A Parametric Misclassification Model 

For the binary choice case, Hausman et al. (1998) showed 
that the bias in estimates of P can be substantial if some ob- 
servations on the endogenous variable are misclassified. They 
proposed a generalization of the binary probit model to take 
into account classification errors. We extend this model to the 
ordered probit case. 

We assume that the reported category is yi but the (unob- 
served) true category is zi, which is related to the latent vari- 
able y* as in the ordered probit model 

zi =j if mj1 < y < mj, j=1,2,3. (4) 

The probabilities of misclassification are given by 

Pr(yi =jlzi = k, xi) = Pk,j, j, k = 1, 2, 3,j / k. (5) 

Thus pkj is the probability that an observation belonging to 
category k is classified in category j. If Pk,j = 0 for all j, k with 
j # k, then there is no misclassification, and the model simpli- 
fies to the ordered probit model. The model with three cate- 
gories has six misclassification probabilities, Pk,j. 

In this model, the latent variable yf can be seen as a per- 
fect indicator of speaking fluency on a continuous scale, some- 
thing like the score on the ideal objective speaking fluency test. 
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The "true" category zi is the categorical outcome based on this 
score. Misclassification means that the wrong outcome is re- 
ported. It should be acknowledged that this is only one way to 
model misclassification. For example, another source of mis- 
classification would be measurement error in y*, but a nor- 
mally distributed measurement error would be captured in ui 
and would not be identified. A third source would be individual 
variation in cutoff points, which we test for in Section 5. 

The main identifying assumption in the model is that Pk,j does 
not depend on xi (except through zi). This is the common iden- 

tifying assumption in this literature, used by Hausman et al. 
(1998), Lee and Porter (1984), and Douglas, Smith Conway, 
and Ferrier (1995), among others. Lewbel (2000) showed that 
the binary choice model is still identified under the weaker as- 

sumption that one continuous variable with nonzero P does not 
affect the misclassification probabilities, but no obvious candi- 
date for such an exclusion restriction is available. Assumptions 
like this could be avoided if a different measurement could be 
used as a benchmark, such as, in our empirical example, ob- 

jective measurement of language proficiency (see Charette and 

Meng 1994). 
For the binary choice case (with categories denoted by 

0 and 1), Hausman et al. (1998) showed that identification of 

Pk,j, j, k = 0, 1, does not rely on the normality assumption, as 
long the support of xll is the whole real line; that is, as long 
as there are sufficient observations with very low and very high 
values of x fl. The probabilities of misclassification are then 

given by 

pl,o= lim Pr(yi = 0Oxi) 
xfl-oo 

and 

po,1 = lim Pr(yi = 1lxi). xfl-*-oo 

Hausman et al. (1998) showed that their model satisfies the 

single-index property that E{yixi} depends on xi via xfl only. 
Therefore, P is identified up to location, scale, and sign. The ad- 
ditional condition required for identification is that po,1 and pl,o 
not be too large, 

P,o +PO,1 < 1. (6) 

This guarantees that El{yixi} increases with x/fl. Accord- 

ingly, the sign of f is also identified, and (5) implies that 

po, 1 and plo are nonparametrically identified. 
For the ordered probit case with categories 1, 2, and 3 and 

six misclassification probabilities, we get 

E{yi xi) = 2 - p2,1 + P2,3 

- '((mi - xfi)/o)(1 -P1,2 -P2,1 ?P2,3 - 2pl,3) 

+ [1 - ((m2 - x )/o')] 
x (1 - P3,2 - P2,3 -P2,1 - 2p3,1). (7) 

Thus the condition that E{yilXi} increases with xfl for every 
value of xfl implies that [instead of (6) for the binary choice 
case] 

pl,2 + P2,1 - P2,3 + 2pl,3 < 1 and 

P2,3 +P3,2 - P2,1 + 2p3,1 <1. (8) 

This condition is satisfied for sufficiently small values of the 
misclassification probabilities. A sufficient condition for (8) has 
been given by Abrevaya and Hausman (1999), 

P1,1 > P2,1 > P3,1 and P3,3 > P2,3 > P1,3. (9) 

This condition is stronger than (8) but easier to understand in- 
tuitively. 

The argument for nonparametric identification in the bi- 
nary choice case applies to pl,2, pl,3, p3,1, and P3,2, but not to 

P2,1 orP2,3. Identification of these is achieved in this parametric 
model by imposing normality of the error terms. The model can 
be straightforwardly estimated by maximum likelihood (ML), 
where the Pk,j's are estimated jointly with the slope parame- 
ters P. 

2.2 A Semiparametric Approach 

The parametric ML estimates of the slope parameters P in 
the models introduced earlier require distributional assumptions 
and may not be robust to misspecification. If we are interested 
in / only and consider the Pk,j nuisance parameters, then semi- 

parametric estimation seems to be a good alternative. 
Consider the model with misclassification probabilities. The 

conditional mean of the observed categorical variable yi in 
model (1)-(5) given xi is given by (7). It depends on xi only 
through the index xfl. Thus (1)-(5) is a special case of the 

single-index model given by 

E{yilxi} = H(x/fl), (10) 

where H is an unknown link function. If we relax the normality 
assumption (3) and replace it by the assumption that 

ui is independent of xi, (11) 

then we get the following expression instead of (7): 

E{yilxi} = 2 - P2,1 + P2,3 

- G(mi - x/3)(1 - P1,2 - P2,1 + P2,3 - 
2pl,3) 

+ [1 - G(m2 - Xi/f)] 
x (1 - P3,2 - P2,3 + P2,1 - 2P3,1), (12) 

where G is the distribution function of the error term ui (G(t) = 
Pr[ui < t]). 

Again, the right-hand side depends on xi only through xfl, 
so that (1), (2), (4), (5), and (11) lead to the single-index model 
(10) with link function H given by (12). As stated before, the 
crucial assumption here is that the misclassification probabili- 
ties in (4)-(5) do not depend on xi. 

Moreover, under the same assumptions, it is straightforward 
to show that the conditional variance V{yitxi) also depends 
on xi through the same index xfi only. This implies that the 
model for yi is heteroscedastic, but the heteroscedasticity has 
a special form. Finally, it is easy to show that the inequalities 
in (8) imply that H can be chosen to be nondecreasing. 

Thus the model discussed earlier is a special case of the 
general single-index model (10) for some (unknown) link func- 
tion H. In this model the vector f of slope parameters is iden- 
tified up to scale; the constant term is not identified. A number 
of asymptotically normal root n-consistent estimators for f 
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in this model have been discussed in the literature, requir- 
ing various assumptions on the distribution of the explanatory 
variables xi and regularity conditions on the link function H. 
Ichimura (1993) used nonlinear least squares combined with 
nonparametric estimation of H. This estimator requires numer- 
ical minimization of a nonconvex objective function. Hausman 
et al. (1998) used the maximum rank correlation estimator of 
Han (1987). This also requires numerical optimization. We 
experimented with applying this estimator but ran into conver- 
gence problems with the Han estimator, possibly due to the rel- 
atively large number of explanatory variables. 

Attractive from a computational standpoint is the class of 
(weighted or unweighted) average derivative estimators (see, 
e.g., Powell, Stock, and Stoker 1989). They require that the dis- 
tribution of x be absolutely continuous and thus are not directly 
applicable to our empirical example. Horowitz and Haerdle 
(1996) have developed an estimator that allows for discrete 
variables, but not for interaction terms of continuous variables. 
Because interaction terms are important in our particular appli- 
cation, the Horowitz and Haerdle (1996) estimator cannot be 
applied. We therefore focus on Ichimura's semiparametric least 
squares (SLS) estimator. 

Ichimura's SLS estimator minimizes the sum of squares 
Sn(f) over i, where 

Sn(f) = 1/n (yi - E [yixfi])2. (13) 

Here E[yilx? f] is a univariate kernel regression estimate of yi 
on the index x'i (for given P). Finding the P at which (13) 
is minimized requires an iterative procedure. If smooth kernel 
weights are used, then the function to be minimized is smooth 
in P, and a Newton-Raphson technique can be used to find the 

optimal P, that is, fSLS. Ichimura (1993) showed that under ap- 
propriate regularity conditions, this yields a V.n-consistent as- 
ymptotically normal estimator. He also derived the asymptotic 
covariance matrix of this estimator and showed how it can be 
estimated consistently. 

Ichimura (1993) also indicated how to design an asymptot- 
ically efficient weighted semiparametric least squares (WSLS) 
estimator that uses SLS as the first step. For the general case, 
this requires nonparametric regression of the squared SLS 
residuals on x and leads to problems if x contains interac- 
tion terms or discrete variables. In our case, however, we have 
demonstrated that the natural generalization of the paramet- 
ric models implies that V[yilxi] depends on xi only through 
x•i, and for this special case Ichimura showed that the efficient 
WSLS estimator requires weighting with V[YiXflSLS] -1, ob- 
tained by a nonparametric regression of the squared SLS resid- 
uals on the index xiSLS . 

Implementing the SLS and WSLS estimators in practice re- 
quires choosing a kernel and a bandwidth. We work with the 
Gaussian kernel. For consistency, the bandwidth should tend 
to 0 if n -- o at a sufficiently slow rate. Theoretical results for 
similar problems suggest that undersmoothing will be optimal; 
that is, the optimal bandwidth will be smaller than the optimal 
bandwidth for the nonparametric regression of yi on x•f. The 
common approach for choosing a bandwidth in a situation like 
this is to experiment with the bandwidth that would be optimal 
for the nonparametric regression problem (given a value of f) 

and with smaller bandwidth values (to under smooth). We will 
present results for several choices of the bandwidth. 

Once fiSLS (or fWSLS) is obtained, the link function H can 
be estimated by a nonparametric (kernel) regression of yi on 
the estimated index xfiSLS. The usual asymptotic properties of 
a kernel estimator apply because PSLS converges at a faster rate 
than the nonparametric estimator. 

3. DATA 

We apply the models and techniques discussed earlier to an- 
alyze the effect of minority concentration on immigrants' pro- 
ficiency in the host country language. The empirical analy- 
sis is based on the Fourth National Survey on Ethnic Mi- 
norities (FNSEM), a cross-sectional survey carried out in the 
United Kingdom in 1993 and 1994. Individuals included are 
age 16 or older. There are 5,196 observations in the minority 
sample. We focus on a homogeneous sample of 1,471 men of 
Indian ethnicity (from India, Bangladesh, Pakistan, or Uganda). 
The FNSEM contains information on the concentration of the 
individual's own minority group at the ward level, which has 
been matched to the survey from the 1991 Census. (A ward 
is the smallest geographical area identified in the Population 
Census, with a mean population of 5,459 individuals in 1991.) 
The language information in the survey is based on the inter- 
viewer's evaluation of the individual's language ability in Eng- 
lish, with categorical answers (speaks English) very well, fairly 
well, slightly, and not at all. For the empirical analysis, we have 
combined the categories slightly and not at all and recoded the 
three categories as 3 (very well), 2 (fairly well), and 1 (slightly 
or not at all). 

Summary statistics on the resulting categorical speaking flu- 
ency variable and on other individual characteristics are pre- 
sented in Table 1. About 47% of the 1,471 men in the survey 
data are reported to speak English very well. Only 4.3% are as- 
signed to the category not at all; this group is merged with the 
22.6% in the category slightly. 

On average, the concentration of minorities of the same eth- 
nicity as the respondent is about 16.2%, with substantial vari- 
ation in the sample and a sample standard deviation of 15.2%. 
There is a clear negative correlation between language profi- 
ciency and minority concentration. Average minority concen- 
tration in the subsample of people with low speaking fluency 
is about 20.8%, in the subsample of the most fluent speakers it 
is only 13.7%. The rank correlation coefficient is -.215 (with 
p-value .000). 

Table 1. Variable Definitions and Sample Statistics 

Standard 
Variable Code Mean deviation 
Speaks English slightly or not at all SPF = 1 .2685 
Speaks English fairly well SPF = 2 .2624 
Speaks English very well SPF = 3 .4691 
Age (years) age 42.38 14.27 
Years since migration ysm 19.58 9.35 
Country of birth: Africa afroas .2271 
Country of birth: Bangladesh bangladesh .1788 
Country of birth: India indian .2998 
Country of birth: Pakistan pakistan .2944 
Minority concentration (%) conc index 16.20 15.20 
NOTE: Source: FNSEM, 1,471 observations. 
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4. SEMIPARAMETRIC ESTIMATES 

Some of the SLS and WSLS estimates explained in Sec- 
tion 2.3 are presented in Table 2. The first column presents 
SLS estimates with the bandwidth set equal to 1.066 (x'f)n-2, 
where n is the number of observations and 6 (x'f#) is the es- 
timated standard deviation of the single index. This is the 
rule-of-thumb estimate for the optimal bandwidth in the ker- 
nel regression (Silverman 1986). Because undersmoothing typ- 
ically gives more efficient estimates for the single index (Powell 
1994), we also present the results for a bandwidth that is half 
as large (third column). The differences between the two sets 
of estimates or their standard errors are small, confirming the 
general finding in this literature that the SLS results are not 
sensitive to the choice of the bandwidth (see, e.g., Bellemare, 
Melenberg, and van Soest 2002). The second column presents 
the WSLS estimates, using the same bandwidth as in the first 
column. These estimates are very similar to those in the first 
column. Estimated standard errors are somewhat smaller in 
most cases, in line with the fact that WSLS is asymptotically 
efficient but SLS is not, but there are also two parameters for 
which the estimated standard error is slightly larger for WSLS 
than for SLS. Results for the smaller bandwidth (not presented) 
tell the same story. 

Standard errors are based on the asymptotic distribution of 
the estimator. Bootstrapped standard errors give the same eco- 
nomic conclusions and thus are not presented. They are larger 
than the asymptotic standard errors for some parameters and 
smaller for others. 

The constant term is not estimated. The coefficient of YSM 
(years since migration) is normalized to .9634, its estimate in 
the ordered probit model (see below). This normalization makes 
it easy to compare semiparametric and parametric results. The 
variable YSM has a significant positive effect with a large ab- 
solute t value in all parametric models, which justifies the as- 

sumption that the coefficient is nonzero, the (only) necessary 
condition for using this normalization. 

The estimation results are qualitatively in line with those re- 

ported by Lazear (1999). Because not only YSM itself, but also 
YSM squared and YSM interacted with the minority concentra- 
tion index, are included among the regressors, the effect of an 
increase of YSM on expected speaking fluency varies across 
observations. Nonetheless, the marginal effect of increasing 

YSM on expected fluency is positive at almost all observations. 
The negative sign of YSM squared implies that this effect is 
smaller for those with longer years of residence. Conditional on 
YSM, older immigrants are less fluent in English than younger 
immigrants. The country of origin dummies indicate that, keep- 
ing other characteristics constant, immigrants from Pakistan 
and Bangladesh are significantly less fluent than immigrants 
from India, whereas the individuals of Afro-Asian origin are 
the most fluent. 

Speaking fluency falls with minority concentration at a 
declining rate, confirming Lazear's finding for the United 
States. One explanation for this is that individuals who live 
in areas with high concentrations of residents of their own mi- 
nority have lower incentives to learn the majority language. 
Another explanation is that individuals select their area of 
residence according to their language proficiency. As Lazear 
pointed out, a significant negative effect of the concentration 
variable on speaking fluency is consistent with both expla- 
nations. In both cases, the individual's (location or learning) 
choice is determined by the objective of maximizing interaction 
with individuals with whom they share a common language. 

To distinguish between the two explanations, Lazear added 
an interaction term between minority concentration and years 
of residence (YSM). An insignificant interaction term favors the 
self-selection hypothesis, because the learning argument would 
imply a negative interaction effect-a larger learning rate, (i.e., 
a higher effect of YSM) when learning pays off more (i.e., when 
minority concentration is lower). In Table 2 the coefficient on 
the interaction term of YSM and minority concentration is neg- 
ative but insignificant and close to 0, favoring the self-selection 
hypothesis. Interestingly, this result is similar to what Lazear 
found for the 1990 U.S. census. 

Figure 1 illustrates the estimated link function H in (10) 
for the first set of results in Table 2. (The quartic kernel was 
used, with bandwidth chosen by visual inspection.) The figure 
looks very similar for the other results. The figure also shows 
95% uniform confidence bounds (based on Haerdle and Linton 
1994). The estimated link function is increasing on its full do- 
main except at very low values of the index, for which the es- 
timates are imprecise due to the small number of observations 
in that region. In an ordered response model without misclas- 
sification, the value of the link function should tend to 1 if the 
index value tends to -oo. The figure suggests that this is not the 
case, however. This could be due to misclassification of some 
respondents with low speaking fluency. 

Table 2. Semiparametric Estimation Results 

SLS; h = 1.5470a WSLS; h = 1.5470a SLS; h = .7563b 
Bandwidth Coefficient Standard error Coefficient Standard error Coeffecient Standard error 

ysm .9634 .9634 .9634 
age -.9617 .1071 -.9923 .1201 -.9840 .1094 
conc index -25.1826 6.4955 -26.5351 6.4125 -20.2509 6.1338 
afroas 4.2826 .9689 4.1344 .9171 4.1996 .9296 
pakistan -4.2943 .8178 -4.4190 .7726 -3.7830 .7825 
bangladesh -4.3825 .8960 -4.6807 .8785 -4.1162 .8716 
age sq .0061 .0010 .0063 .0010 .0064 .0010 
ysm sq -.0140 .0011 -.0139 .0010 -.0147 .0010 
conc ind sq 32.3767 9.2184 34.0762 8.8466 24.2073 8.6987 
ysm * conc ind -.0655 .1420 -.0656 .1524 -.0872 .1460 

a 1.06 (x'f)n-'2 (Silverman's rule of thumb). 
b .53? •/•)n-.2 
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Figure 1. Link Function of the Semiparametric Model. This is a non- 

parametric kernel regression of speaking fluency (1, slightly or not at all; 
2, fairly well; 3, very well) on the semiparametric estimate of the index. 

The broken curves are uniform 95% confidence bands. The link function 

is monotonically increasing but does not range from 1 to 3, suggesting 
misclassification. 

5. PARAMETRIC ESTIMATES 

Estimates for several parametric models are presented in Ta- 

ble 3. The first column gives the results of the standard ordered 

probit model. The second column incorporates misclassifica- 

tion probabilities (see Sec. 2. 1). 
The two sets of parametric estimates of the slope coefficients 

are generally in line with each other in terms of signs and signif- 
icance levels, but there are substantial differences in magnitude. 
We discuss the magnitude of the most important estimates later 

when we look at predicted marginal effects on the probabili- 
ties of good and reasonable speaking fluency. The coefficients 

all have the same sign as in the semiparametric model. Fluency 
increases with YSM at a decreasing rate. Immigrants from Pak- 

\) 7 

0I 

increases with YSM at a decreasing rate. Immigrants from Pak- 

istan and Bangladesh are less fluent than immigrants from In- 
dia, whereas Afro-Asian immigrants have the highest fluency, 
ceteris paribus. Speaking fluency is lower in regions where the 
concentration of immigrants from the same country of origin is 

larger. 
The estimated coefficient on the interaction term of mi- 

nority concentration and YSM is negative and significant at 

approximately the two-sided 10% level in both models. This 
differs from the semiparametric estimates, which were nega- 
tive but smaller in magnitude and not significant at all. Whereas 
the semiparametric evidence suggested that the negative effect 
of minority concentration on speaking fluency is due to self- 
selection into local areas and not to the effort at learning the lan- 

guage, the parametric results suggest that learning could play a 
role as well. But t values are not sufficiently high to draw any fi- 
nal conclusions on this. For those with 0 years of residence, the 
estimated pattern of speaking fluency as a function of minor- 

ity concentration is decreasing up to about the 88th percentile 
of minority concentration according to the model with misclas- 
sification and up to the 94th percentile for the semiparametric 
models. This suggests that already shortly after entry, immi- 

grants in low minority concentration areas speak better English, 
a finding that can be explained only by self-selection. 

The misclassification probabilities in the second column are 

by definition nonnegative, implying that standard t tests or like- 
lihood ratio tests on pk, = 0 are inappropriate (see, e.g., Shapiro 
1985). Still, the estimates of the pk,j and their standard errors 

imply that 0 is not contained in the one-sided 95% confidence 
intervals of four of them, suggesting that adding the probabil- 
ities of misclassification is an improvement compared to the 
standard ordered probit model. A formal test of the hypothesis 
Pk,j = 0 for all j 4 k can be based on the likelihood ratio (LR) 
using the method proposed by Andrews (2001). The LR test 
statistic does not have the usual chi-squared distribution under 
the null, because the test is one-sided and because under the 
null, the parameter vector is not in the interior of the parameter 

Table 3. Estimation Results Parametric Models 

Ordered probit Misclassification model 
Coefficient Standard error Coefficient Standard error 

Constant 28.4750 3.3542 55.6333 13.2788 
ysm .9634 .1342 2.0196 .4168 
age -.8258 .1411 -1.6342 .4246 
conc index -34.0386 7.7247 -64.1300 17.8579 
afroas 3.7520 .9326 7.9896 2.5771 
pakistan -6.0868 .8292 -9.6401 2.2333 
bangladesh -6.0094 .9649 -10.0340 2.4232 
age sq .0041 .0015 .0082 .0034 
ysm sq -.0152 .0032 -.0314 .0079 
conc ind sq 48.2251 10.8978 93.2072 24.1164 
ysm * conc ind -.3918 .2307 -.6923 .4164 
m2 8.7001 .3913 23.2845 5.3590 

Probability 2 if 1 0 -* 
Probability 3 if 1 .1029 .0458 
Probability 1 if 2 .2725 .0473 
Probability 3 if 2 .2450 .0570 
Probability 1 if 3 .0095 .0146 
Probability 2 if 3 .1042 .0381 

Log-likelihood -1,317.646 -1,309.332 
* Estimate at the lower bound. 
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space. Andrews (2001) demonstrated that the LR test statistic 
can still be used and showed how to compute the appropriate 
asymptotic critical values, using a quadratic approximation to 
the likelihood. In the Appendix we give the algorithm used for 
our case. We find a 5% critical value of 9.04 and a 1% critical 
value of 12.88. Because the realization of the LR test statistic 
is 16.72, the null hypothesis is rejected at the 1% level. This 
confirms that allowing for misclassification errors significantly 
improves the fit of the model. 

Another way to investigate the validity of the model is to 
test it against a more general parametric model that allows the 
threshold parameters to vary across evaluators. Evaluators (in 
our case, the interviewers) are not precisely instructed on how 
to construct their scores. This makes allowing for heterogeneity 
in the threshold values intuitively attractive, because it implies 
that two evaluators who perceive the same proficiency y* may 
still give different answers on the ordinal scale. Das (1995) 
allowed for unobserved heterogeneity in the bounds. His ap- 
proach can be straightforwardly extended to also allow for mis- 
classification. (Details and estimation results of this model are 
available on request from the authors.) The Andrews test could 
not reject the model with classification errors only against the 
model with classification errors as well as random thresholds 
(test statistic, 2.12; 10% critical value, 2.90). This supports the 
model with misclassification errors and implies that extending 
the model with random variation in thresholds is not necessary. 

The estimates of the misclassification probabilities in Table 3 
amply satisfy the inequalities of Abrevaya and Hausman (1999) 
that are sufficient for identification and imply monotonicity of 
the link function. The estimates of p2,1 and P2,3 have the largest 
standard errors, reflecting the problem that these are more dif- 
ficult to identify. Compared with the ordered probit model, 
most slope coefficients and the estimate of the category bound 
m2 have increased by approximately a factor of 2. Due to the 
normalization, this can also be seen as a reduction of the stan- 
dard deviation of the error term u by about 50%. The inter- 
pretation is that part of the unsystematic variation in observed 
speaking fluency is now explained by classification errors. 

The results of the parametric models can be used to analyze 
the size of the effects of concentration of immigrants of a cer- 
tain language minority on true speaking fluency, not affected 
by misclassification error. Table 4 summarizes the results. It 
presents the estimated marginal effects of minority concentra- 
tion on the probabilities of at least slight fluency and very good 
fluency according to each of the models in Table 3 at the first, 

second, and third quartiles of the sample distribution of the con- 
centration index. Other regressors have been set to their sam- 
ple means. The estimated marginal effects are functions of the 
estimates of f and m2. Misclassification probabilities are dis- 
carded; the marginal effects refer to the true classification, not 
to the reported classification. 

The table shows some substantial differences in the estimated 
marginal effects. For example, let us compare two otherwise 
identical immigrants in a region with approximately median 
ethnic concentration. If the area of the one immigrant has a 
1-percentage point higher ethnic concentration than the area 
of the other immigrant, then the ordered probit model predicts 
a 1.33-percentage point lower probability of speaking English 
very well for the immigrant in the lower concentration area. 
According to the misclassification model, the difference has 
the same sign but is much larger, about 2.27-percentage points 
(with standard error .44-percentage points). 

Model 2 allows for misclassification and significantly out- 
performs the ordered probit model. But it leads to much larger 
standard errors on the estimated marginal effects. As an in- 
termediate case, we also estimated a model that allows for 
misclassification in an adjacent category, but not in nonadja- 
cent categories. In other words, we imposed pl,3 = P3,1 = 0 in 
model 2. We do not present detailed results for this model, be- 
cause this model is formally rejected against model 2. Nonethe- 
less, most of the estimation results are similar to those of 
model 2. The estimates of the misclassification probabilities 
are, for example, P1,2 = 0 (the lower bound), P2,1 = .2528 
(standard error .0468),kP2,3 = .3023 (standard error .0384), and 
P3,2 = .0877 (standard error .0379)-values that are similar to 
those given in Table 3. The estimated marginal effects are also 
similar to those of model 2, but with standard errors that are 
about 20% smaller on average. 

5.1 Comparing Two Parametric Models 

Figures 2 and 3 compare the predictions of two paramet- 
ric models, ordered probit and the misclassification model. We 
look at the estimated probabilities that true fluency is (at least) 
good and that reported fluency is good. In the ordered probit 
model, observed and true speaking fluency (y and z) coincide, 
but in the model with misclassification errors they do not. 

Figure 2 presents a scatterplot of the predicted probabilities 
of good speaking fluency according to the two parametric mod- 
els. For the misclassification model (vertical axis), the figure 
shows the predictions of the true speaking fluency variable z. 

Table 4. Marginal Effects of Minority Concentration, Parametric Models 

Quantile of minority Ordered probit Misclassification model 
concentration Effect Standard error Effect Standard error 

P(fairly or very fluent) 
At 1st quartile -.8811 .0972 -.1857 .1878 
At median -.9255 .1140 -.3733 .2614 
At 3rd quartile -.7895 .0928 -.6286 .2422 
P(very fluent) 
At 1st quartile -1.5310 .1983 -2.8962 .5999 
At median -1.3293 .1638 -2.2688 .4407 
At 3rd quartile -.8728 .0860 -1.0649 .1985 

NOTE: Marginal effect of an increase of ethnic concentration by 1-percentage point on the probability (in percent- 
age points) of speaking English fairly or very well (top) or very well (bottom). 
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Figure 2. Comparing P[z = 31x] for the Ordered Probit and the Mis- 
classification Model. Scatterplot of the predicted probabilities that some- 
one speaks English very well according to the ordered probit (horizontal 
axis) and the misclassification model (vertical axis). The solid line is 
the 45-degree line. The models give clearly different predictions of true 
speaking fluency. 

For the ordered probit model (horizontal axis and 45-degree 
"line), predictions of y and z coincide. We find that the mis- 
classification model leads to more probability estimates close 
to 0 or 1 than the ordered probit model, leading to a larger dis- 

persion in P[z = 3 Ix] according to the misclassification model 
than according to ordered probit. Still, the correlation between 
the two sets of predictions is quite large (with a sample correla- 
tion coefficient of .97). 

Figure 3 compares predictions of the probability that individ- 
uals report good or very good speaking fluency. In the misclas- 

0 
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0.0 0.2 0.4 0.6 0.8 1.0 

P(Y=31X) Ordered probit 

Figure 3. Comparing P[y = 31x] for the Ordered Probit and the 
Misclassification Model. Scatterplot of the predicted probabilities that 
someone is reported to speak English very well according to the or- 
dered probit (horizontal axis) and the misclassification model (vertical 
axis). The solid line is the 45-degree line. The models give similar pre- 
dictions of reported speaking fluency except in the tails. 
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sification model, the probability of reporting good or very good 
fluency is never close to 1 or 0. For most observations with pre- 
dicted probabilities not close to 1 or 0, the predictions according 
to ordered probit and misclassification models are similar. The 
correlation coefficient is almost .99. 

The substantial differences between true and reported fluency 
in the misclassification model confirm the conclusion from the 
misclassification probabilities in Table 4. Generalizing the or- 
dered probit model by incorporating misclassification probabil- 
ities is useful in this empirical example. The same conclusion is 
obtained for the probability of bad or very bad speaking fluency 
(figures not reported). 

5.2 Misspecification Tests of Parametric Models 

In principle, the parametric models could be tested against 
the semiparametric model using a Hausman test. Under the null 
that the parametric model is correct, the parametric ML esti- 
mates are asymptotically efficient and the SLS estimates are 
consistent. Under the alternative that the semiparametric model 
is correctly specified but the parametric model is not, only the 
SLS estimates are consistent. Thus a chi-squared test can be 
based on the difference between parametric and semiparamet- 
ric estimates. Unfortunately, however, the estimated standard 
errors of the SLS estimates are not always larger than those 
of the parametric ML estimates. This implies that the Hausman 
test statistic cannot be computed. This problem remains if boot- 

strapped standard errors are used for the semiparametric model. 
The procedure of Newey (1985) cannot be used, because it does 
not apply to the semiparametric estimator. 

An alternative, graphical, specification test of parametric 
models has been introduced by Horowitz (1993). The null hy- 
pothesis is that the parametric model is correctly specified. The 
result for the parametric model with misclassification is illus- 
trated in Figure 4. The figure presents two functions of the index 

0 

) // 

solid curve is the predicted probability of reported /ery good speak- 

ing fluency as a function of the estimated index for the misclassification 

correct is not rejected. 



320 Journal of Business & Economic Statistics, July 2004 

estimate x'b/s, where b and s are the parametric estimates of 
P and a in Table 3. The solid curve gives the predicted probabil- 
ities P[yi = 3 xil = P[ yi = 3 xib] according to the parametric 
model, as a function of xb. The dashed curves represent non- 
parametric kernel regression estimates of the observed dummy 
indicator variable I(yi = 3) on the same index x; b with uniform 
95% confidence bands. Because the estimator b converges to fP 
at rate root n, which is a faster rate than the rate of convergence 
of the nonparametric estimator, the standard errors of b are as- 
ymptotically negligible, and confidence bands are calculated as 
if b were known. 

Under the null that the parametric model is specified cor- 
rectly, b is consistent for f, and the parametric expression for 
the predicted probability P[yi = 31xi] is consistent for P[yi = 

3 xi]. But the null hypothesis also implies that P[yi = 31xi] is 
a single-index function of xfi and that b is a consistent es- 
timate of this single index (up to scale). The nonparametric 
curve is the estimated link function, which also will be con- 
sistent for P[yi = 31xi]. Thus under the null, both curves are 
consistent for the same function and should be similar. The null 
hypothesis will be rejected if the nonparametric (dashed) curve 
is significantly different from the parametric (solid) curve. Be- 
cause the parametric curve is based on estimates that converge 
at rate v/-n, whereas the nonparametric curve converges at the 
lower rate n"4, the imprecision in the former curve can be ne- 
glected compared with that in the latter curve, and the test can 
be based on the uniform confidence bands around the nonpara- 
metric curve. 

The result is that the solid curve is everywhere between the 
uniform confidence bands, so that the parametric model cannot 
be rejected. This can be seen as evidence in favor of the para- 
metric misclassification model. It should be admitted, however, 
that the same test cannot reject the ordered probit model either, 
whereas we already saw that the Andrews test rejects this model 
against the model with misclassification errors. This casts some 
doubt on the power of this type of test. The same conclusions 
are obtained if P[yi = 1 lxb] is used instead of P[yi = 3 1x'b]. 

6. SUMMARY AND CONCLUSIONS 

In models with ordered categorical dependent variables 
where the categorical assignment is based on subjective eval- 
uations, misclassification may have two sources: classical 
misclassification due to simple reporting errors and misclassifi- 
cation due to a subjective choice of scale. Both sources can lead 
to seriously biased parameter estimates and predictions. Para- 
metric estimators that incorporate and estimate misclassifica- 
tion probabilities, as well as semiparametric estimators, are an 
alternative to standard parametric models. Extending the work 
of Lee and Porter (1984) and Hausman et al. (1998), we have in- 
troduced a parametric model that incorporates misclassification 
probabilities for the case of more than two ordered categories 
and that allows for scale heterogeneity. We have shown that this 
model is a special case of a semiparametric single-index model 
that can be estimated with semiparametric least squares. 

Using these models, we analyzed the association between 
minority concentration and speaking fluency of immigrants, us- 
ing data for the United Kingdom. We found that the misclassi- 
fication model is a significant improvement over the standard 

probit model. Allowing for random thresholds does not lead 
to further improvements. The qualitative effects of minority 
concentration are similar, supporting Lazear's finding for the 
United States that speaking fluency falls with minority con- 
centration. However, marginal effects show that the size of the 
correlation and the shape of the relationship between fluency 
and minority concentration are quite different according to the 
two models. The models both show weak evidence in favor 
of a learning effect, reflected by a negative interaction effect 
of minority concentration and YSM that is significant at the 
one-sided 10% level. The evidence in favor of self-selection of 
more fluent immigrants into areas with lower minority density 
is much stronger and insensitive to the chosen model. Semi- 
parametric estimates in a model that nests all parametric mod- 
els considered confirm the qualitative conclusions, although the 
evidence of a learning effect is even weaker. 

A shortcoming of the model is that probabilities of misclassi- 
fication in intermediate categories are not precisely estimated, 
because their identification relies on parametric assumptions. 
Better estimates of all misclassification probabilities would 
require additional data, such that alternative measurements 
(Charette and Meng 1994) or panel data. This is on our research 
agenda. 
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APPENDIX: ANDREWS TEST 

Here we explain how to test the null hypothesis Ho:Pjk = 

0, j, k = 1, 2, 3, j 0 k, against the alternative pjk > 0 for at 
least one pairj 0 k. (Tests for random thresholds against fixed 
thresholds are constructed in the same way.) Because the model 
is not defined for pjk < 0, the parameter vector is not an internal 
point of the parameter space under the null hypothesis, imply- 
ing that standard asymptotic theory of the ML estimator does 
not apply. It also imples that alternative tests for inequality con- 
straints, such as those of Andrews (1998) or Szroeter (1997), 
cannot be applied. Andrews (1999) derived the asymptotic dis- 
tribution of a class of a general class of estimators including 
ML when the true parameter value lies on the boundary of the 
parameter space. Andrews (2001) later applied the earlier re- 
sults (Andrews 1999) to derive the asymptotic distribution of 
the quasi-LR test statistic, which is what we need. (Andrews 
also allowed for nuisance parameters, which play a role under 
the alternative only. Such parameters do not appear in our case; 
see thm. 4 in Andrews 2001.) The special case without nui- 
sance parameters that are not identified under the null also fol- 
lows from theorem 3 of Andrews (1999). It is straightforward 
to check that the regularity assumptions required for this theo- 
rem are satisfied in our example, because observations are iid, 
ML estimation is used, the log-likelihood has continuous right 
partial derivatives of second order, and the parameter space has 
the form of a convex cone. Checking the regularity conditions is 
basically the same as for the example of a random coefficients 
model of Andrews (1999). 
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Let LR represent the LR test statistic, 2(lnL1 - InLo), where 

L1 is the unrestricted maximum of the likelihood (allowing 
for all pj,k > 0) and Lo is the restricted maximum (imposing 
Pj,k = 0 for all j, k = 1, 2, 3). The parameter vector can be writ- 
ten as 0 = (0'1, 0')', where 02 contains the six misclassification 
probabilities pl,2, ..., P3,2 and 01 contains the other 12 (unre- 
stricted) parameters of the model. The parameter space can be 
written as V = (-oo, 00)12 x [0, 00)6, and the null hypothesis 
is 0 E Vo = (-o(, 00)12 x {0}6. (We ignore the obvious lower 
bound on the threshold m2, because it is not binding and is irrel- 
evant for the local approximations.) Let J be minus the expected 
value of the Hessian of the log-likelihood contribution of a ran- 
dom observation at the true parameter values, which under the 
null can be consistently estimated in the usual way by J, the 
sample mean of the matrix of second-order partial derivatives 
at each observation, evaluated at the restricted ML estimates. 
Similarly, let I be the expected value of the outer product of the 
gradient of the log-likelihood contribution of a random obser- 
vation and let I be its natural estimate under the null. The only 
difference with the usual case of an internal point of the para- 
meter space is that right partial derivatives are used for the pa- 
rameters Pj,k. 

Theorem 4 of Andrews (2001) now implies that LR has the 
same asymptotic distribution as 

Inf[oEvol q(O) - Infl[oev] q(O), (A. 1) 

with 

q(O) = (0 - Z)'J(O - Z), Z - N(O, J-'Ij-'). (A.2) 

The asymptotic distribution of LR is thus be obtained by the 
following simulation procedure: 

"* Plug in the estimates J for J and I for I. (As in the usual 
ML case, I and J coincide under the null, so an asymptot- 
ically equivalent procedure is to use an estimate for only 
one of them.) 

"* Generate multivariate normal draws of Z. 
"* Solve the two quadratic programming problems in (A. 1) 

for each draw. 
"* Consider the obtained simulated distribution of the differ- 

ence between the two minimum values. 

[Received September 2001. Revised October 2003.] 
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